Long Life Concrete Pavements (LLCP) – Consideration of Design & Construction Features

Shiraz Tayabji FHWA CPTP Implementation Team (CTL)

Caltrans/WSCAPA Concrete Pavement Workshop October 18, 20 & 21, 2004

Presentation Outline

- LLCP Background
- > LLCP Requirements
- LLCP Design & Construction Features
 - o Thickness
 - o Dowels
 - Base Type lean concrete base typical in CA
 - Smoothness (best practice for constructing smooth pavements)
- Summary/Recommendations

Common PCCP Types (US)

JPCP

- 4.3 to 5.5 m joint spacing
- o t = 150 to 200 mm (streets); 200 to 250 mm (secondary roads); 300 to 350 mm (primary and interstate systems)
- Dowels & stabilized base for medium/heavy volume of truck traffic

CRCP

- Steel: 0.65 to 0.80%
- Cracking at 0.8 to 2 m, tight cracks
- o Terminal joints at structures

Widened Slab/Tied Shoulder

- Widened Lane
 - Slab paved 0.6 m wider than usual
 - Lane striped at normal 3.65 m width
 - Reduces edge and corner stress/deflections
- Tied cement concrete shoulder
 - Reduces edge stress/deflections
 - Reduces moisture infiltration
 - o Emergency/future traffic lane

PCC P Evolution - A Long Journey

Resulting from improvements in design, construction & material technologies

2004

Life -30 to 40+ years

LLCP Performance Requirements

- Structural performance
 - Long life no major distresses
 - o Routine M&R only
- Functional performance
 - Safety no wet weather accidents
 - Smoothness good ride
- Lower life cycle cost
 - o Lower agency costs
 - o Lower user operating costs
 - Very few delays & accidents

(Long Life Requires Optimization of Design Features, Construction Techniques & Materials)

Pavement Performance

Pavement Design Considerations

- Minimize failure conditions & costs
- Understand typical failure mechanisms
 - O How does a concrete pavement crack?
 - O How does a concrete pavement fault?
 - O How does a concrete pavement get rough?
 - o Are there other local failure conditions that need to be addressed?
- Understand impact of design features
 - Minimize costs by optimizing design features

How do Concrete Pavements Fail?

And, localized distresses (spalling) and materials related distresses (ASR, etc.)

Allowable Distress/Performance

- > At end of service life
 - o 40 years for primary system
 - o 20+ years for secondary system

Distress	Value
Cracked Slabs, %	10 - 15
Faulting, mm	6 – 7
Smoothness (IRI), m/km	2.5 to 3.0
Spalling (length, severity)	Minimal?
Materials Related Distress	None

LLCP Premise

- LLCP is not a "gimmick" or a "Cadillac" design, but a necessity for high volume highways
- LLCP is a serious on-going effort by DOTs, engineers, contractors, and materials suppliers to design & construct the best concrete pavements for long term service keeping LCC in mind
- LLCP includes the optimization of all components of design, materials & construction to produce cost-effective long-lasting (40+ years) concrete pavements

LLCP - FHWA/DOT LLCP Goals

- Increased service life 40 to 60 years
- > Lower life cycle cost
- Decreased construction time
- > Fewer maintenance closures
- Construction of better initial ride
- Use of efficient construction equipment & procedures (Get in & Get Out AQAP; sustainability)
- Use of improved QA/QC procedures
 - o To monitor quality as paving progresses, not days or weeks later

LLCP - Caltrans Directions

- ➤ New -- Corridors with 20-year traffic > 150,000 vpd or > 15,000 tpd
- Rehab -- Corridors with current traffic > 150,000 vpd or > 15,000 tpd

(Rehab policy under review)

>Added initial cost ~ 3 to 5 % (\$25K to \$50K/lane-mile)

Caltrans Concrete Pavement Policy (Highway Design Manual - Chapter 600)

- Structural design
 - o Base stabilized (LCB or ATB) if TI >10
 - Other bases free draining ATPB/CTPB or aggregate base
 - o No bonding between PCC & LCB
 - OPCC thickness = 300 mm (max shown in tables for TI > 14)
 - Tied-concrete shoulder or widened lane with AC shoulder
- Drainage design guidelines
- Cross-section design guidelines
- Pavement selection process guidelines

LLCP Directions - Other DOTs

- MinnDOT -- 60 year design Jointed (Twin Cities)
 - Durable concrete aggregate (D-cracking concerns)
 - Higher specified air 8.5 +/- 1.5 % (75% entrained air)
 - o 35% GGBF Slag; w/cm < 0.40
 - 1.5 in. diam. stainless steel clad dowels from UK (cost > \$12/bar)
 - Slab thickness 34 mm (vs. standard of 32 mm)
 - o Cost: placement \$6/sy; concrete \$75/cy; clad dowels \$12/bar
- > Illinois DOT -- 30+ year CRCP (I-70 demo & Chicago area)
 - Higher steel content
 - o 33 to 36 mm thickness
 - o 150 mm ATB over 300 mm aggregate subbase
 - Durable concrete aggregate (D-cracking concerns)
 - o Epoxy-coated steel & tie-bars

LLCP Elements - Structural Design

- Design features
 - Thickness
 - Widened lane and/or tied concrete shoulder
 - Joint layout (spacing)
 - Base type & drainage considerations
 - Load transfer mechanism (dowels)
- Design details
- Plans & specifications
 - Clearly defined requirements
 - Requirements must support design objectives
 - May require supplementary provisional specs

LLCP Elements - Materials

> Concrete

- Durable no MRD; Low shrinkage
- Desired structural properties (f, E, α)

Joint system

- Dowel bars corrosion resistant
- Sealant 12 to 15 + years service life; minimize no. of re-sealing (re-facing) intervals

> Base/Subbase

- Non-erodible (moisture insensitive system)
- Desired structural properties (f, E, a)

Subgrade

- Need for a "solid" foundation & construction platform
- Protection from swelling & freezing

Eliminate
Early Age
Distress

LLCP Elements - Construction

- Concrete production & delivery
 - Uniform production & consistency
- Concrete placement & consolidation
 - Dowel bar/tie-bar placement
 - Consolidation monitoring
- Concrete finishing, texturing & curing
 - Minimal manual finishing
 - Durable/low-noise texture
- Concrete sawing & sealing
 - o Single vs. double cut
 - Longer re-sealing intervals
- QA/QC features continuous monitoring

Eliminate
Early Age
Distress

LLCP Structural Design Issues

- Needed improvements
 - Improved understanding of failure modes
 - Cracking, faulting, spalling
 - Optimization of key design features
 - o Possible "out-of-the-box" design concepts for LLCP
 - provide smoother, safer,
 longer-lasting CP at lower LCC

Implementation time period - Next 10 to 15 years

Critical Loading Positions

<u>Fatigue</u>

Midslab loading away from transverse joint produces critical edge stresses

Erosion/faulting

Corner loading produces critical pavement <u>deflections</u>

Load Transfer for LLCP

- Load-transfer is a slab's ability to transfer part of its load to the adjacent slab
- Poor load transfer leads to:
 - Pumping & Faulting

Load transfer (dowels) essential for LLCP

- Also, need to consider dowel bearing stresses
 - O Dowel looseness over time
 - o Dowel size important

LLCP - Slab Thickness

- Thickness, edge treatment (widened lane/tied shoulder), base type & load transfer at joints are inter-related
- > For LLCP, consider
 - o Slab thickness > 300 mm (f(truck traffic))
 - Shorter joint spacing ~ 4.5 m works well
 - Widened outside lane and possible tied shoulder
 - Corrosion resistant dowel bars
 - May use 9 (5&4) or 10 (5&5) to reduce cost
 - Stabilized base

LLCP - Load Transfer (Dowels)

- Corrosion resistant dowels a must
 - Stainless steel clad (~\$10 to \$12)
 - FRP but effectiveness not proven yet
 - Epoxy coated (low cost option) (~\$4 to \$5)
- >38 mm diameter minimum for t = or > 300 mm
- ➤ Can reduce no. of dowels middle 2 to 3 dowels not necessary
 - o May use 9 (5&4) or 10 (5&5) to reduce cost
- Length = 450 mm

Alternative Dowel Bars (FHWA, DOTs, Canada, HITEC, etc)

A number of dowel types are under study o Solid stainless steel; stainless steel clad; solid FRP; FRP tubes filled with concrete, elliptical shaped dowels, etc

>How do we extrapolate short-term test results to

40+ year service life?

LLCP - Base

- ➤ Non-erodible base if rainfall > ~400 mm/year
- Stabilized base LCB/CTB or ATB for medium to heavy truck traffic
 - o Very high strength LCB/CTB not necessary
- Drainable base stability more important than high porosity – 150 to 300 m/day permeability fine
- > PCC/LCB interface treatment (early age concerns)
 - Bonded/monolithic most effective, but not practical
 - Debonding treatment 2 coats of curing, asphalt emulsion, 1 in. HMAC, or plastic/geotextile membrane
 - Joint spacing & timing of sawing critical

PCC/LCB Interface Treatment

Plastic Membrane – Indian National highways, 2004

Geotextile – Denver Airport, 2002

LLCP - Smoothness

- > PCCP constructed smooth remains smoother
- Measures of smoothness for acceptance
 - o IRI < ~1.2 m/km (How to measure?)
 - o PI zero band
- ➤ Smoothness over service life ~ 2 to 3.0 m/km
 - o "Low" rate of degradation in ride quality over time
 - IRI increase/year < ~ 0.05 m/km (av. Over 40 years)

Factors Affecting Initial Smoothness

- Base/subbase track-line support
 - o Extend Track-line by 1m
 - o Stable materials
 - o Trim to grade
 - o Keep track clean
- Horizontal & vertical alignment
 - o String-line management
- Embedded reinforcement and fixtures

Factors Affecting Initial Smoothness Construction Operations

- Avoid stop & go operation
- Maintain uniform speedo > 1.5 m/minute
- Maintain uniform head
- Manage/monitor vibration
 - Check for vibrator trails
 - O Use Smart Vibrator System
- Maintain steady concrete delivery

Finishing Operations

- Minimal finishing do not over-finish pavement does NOT have to be super-smooth
- Longer straight edges produce smoother ride oKansas projects 5 to 6 m straightedge
- Do not add water to facilitate finishing or texturing
- > Finishers have final say on PCCP smoothness

LLCP - Future Directions

- Continue to improve
 - Understanding of pavement behavior
 - o Design feature optimization
 - Concrete mixture optimization
 - o Construction practices

- o Cannot wait for 30 years to find out if some innovations will lead to LLCP
- End result Well-designed & well-constructed PCCP can provide 40 to 50 year low maintenance service life with low life cycle cost!!!!

Accelerated Testing/Instrumented Test Highways

Summary

- Future M-E procedures will allow more optimum designs
 - Will address high levels of truck traffic
 - o Design life of 40 to 50+ years more reliable
 - o Will consider many design features
- Also, major materials related improvements and construction innovations are expected in near future
- ➤ And, instead of "hoping for" long life, we will be designing for long life with 90+% reliability

